Pièces complète 2 euro commémorative et accessoires protection pièces

Un nouveau matériau pour la production d'hydrogène vert à grande … – Actualités Techniques de l'Ingénieur

L’expertise technique et scientifique de référence
{{block-infos-connection}}
Identifiez-vous !
Inscrivez-vous !
Vous n’avez pas encore de compte ?
RECHERCHEZ parmi plus de 10 000 articles de référence ou pratiques et 4 000 articles d’actualité
PAR DOMAINE D’EXPERTISE
PAR SECTEUR INDUSTRIEL
PAR MOTS-CLES
NAVIGUER DANS LA
CARTOGRAPHIE INTERACTIVE
EXPLORER
DÉCOUVREZ toute l’actualité, la veille technologique GRATUITE, les études de cas et les événements de chaque secteur de l’industrie.
Les candidatures sont ouvertes pour le concours Ingénieuses 2023
Phenix accompagnera la grande distribution vers le label national antigaspi
« Matériaux » et « Chimie et Biotech » : deux thématiques qui se distinguent désormais !
| Une question ?
Interview
Facebook
Twitter
Linkedin
Posté le par Pierre Thouverez dans Matériaux, Biotech & chimie
La transition énergétique dans laquelle sont engagés l’ensemble des pays de la planète doit nous conduire, à l’horizon 2050, à une économie décarbonée. Pour cela, il faut développer des moyens de production et de stockage d’énergie décarbonées. Des chercheurs cherchent, partout dans le monde, à développer des technologies innovantes pour produire de l’énergie la plus décarbonée possible.
Parmi les solutions existantes, l’hydrogène, qui n’existe pas tel quel sur Terre, fait l’objet de nombreuses recherches. Pour en produire, on utilise aujourd’hui très massivement le vaporeformage, qui consomme du méthane, pour produire de l’hydrogène et du dioxyde de carbone : un procédé économiquement intéressant mais écologiquement inefficace pour réduire la concentration atmosphérique de gaz à effet de serre.
Une équipe du CNRS, dirigée par Charles Cornet, professeur des Universités à l’Institut fonctions optiques pour les technologies de l’information (Institut FOTON, CNRS/INSA Rennes/Université Rennes 1), développe une photo-électrode pour produire, à partir d’énergie solaire, de l’hydrogène par électrolyse. Ces travaux sont menés en étroite collaboration avec des chercheurs de l’Institut des Sciences Chimiques de Rennes (ISCR-CNRS). A l’heure où l’Etat et les acteurs privés investissent beaucoup pour développer des méthodes de production massive d’hydrogène décarboné, il s’agit pour Charles Cornet et son équipe de montrer que leur procédé peut produire de l’hydrogène, de manière décarbonée, et à un prix compétitif pour être économiquement viable.
Charles Cornet a répondu aux questions des Techniques de l’Ingénieur.
Charles Cornet : L’hydrogène n’est pas disponible sur Terre, il faut le produire. Deux voies principales existent pour cela. D’abord l’électrolyse de l’eau, que tous les collégiens connaissent. Le principe consiste à plonger deux électrodes dans un bac d’eau : on fait passer dans ce bac un courant électrique qui va venir casser les molécules d’eau et séparer l’hydrogène et l’oxygène. La problématique aujourd’hui par rapport à l’électrolyse est l’origine de l’énergie nécessaire à la réaction chimique : selon que cette énergie est carbonée ou décarbonée, le processus de production de l’hydrogène est plus ou moins pertinent, écologiquement parlant.
L’autre technologie est le vaporeformage. On va utiliser du méthane et le combiner à de la vapeur d’eau très chaude, pour former de l’hydrogène. Cette réaction produit également du CO2. On part donc avec du méthane, et on produit de l’hydrogène et du CO2, puissant gaz à effet de serre. D’un point de vue environnemental, le vaporeformage n’a donc pas d’intérêt. Ceci dit, il s’agit aujourd’hui du procédé le plus économique, et 95% de l’hydrogène produit aujourd’hui à travers le monde l’est par reformage.
L’enjeu aujourd’hui autour de l’hydrogène est de coupler sa production avec l’utilisation d’énergies renouvelables, en développant des technologies viables économiquement, pour qu’elles puissent être mises en place à grande échelle.
L’utilisation d’énergies renouvelables pour produire de l’hydrogène pousse à se concentrer sur l’électrolyse, pas sur le reformage. L’idéal serait de pouvoir produire de l’hydrogène et de l’oxygène sans avoir à passer par les énergies fossiles. Cela peut se faire par exemple en connectant des panneaux solaires à un électrolyseur. Plusieurs démonstrateurs de ce type existent déjà. On peut aussi connecter l’électrolyseur à une éolienne, cela a été testé également et fonctionne très bien. Le problème avec ces couplages est la complexité des installations, et leur coût important.
Nous avons choisi une approche qui permet d’utiliser l ‘énergie solaire, sans passer par un ensemble “panneau solaire / électrolyseur”. Notamment parce que les électrodes sont souvent produites à base de matériaux extrêmement chers, comme le platine.
Nous développons actuellement des photo-électrodes, sortes de  panneaux solaires, qui trempent directement dans l’eau. Les rayons du soleil vont être absorbés pour produire des charges électriques, qui vont être directement rejetées dans l’eau pour « casser » les molécules d’eau et produire de l’hydrogène et de l’oxygène.
Ce mécanisme a plusieurs avantages. Déjà, le panneau solaire produit directement l’hydrogène dans l’eau, ce qui simplifie beaucoup le processus. Nous avons combiné une fine couche d’un matériau, appelé semi-conducteur III-V, qui absorbe très bien la lumière, avec une couche épaisse de silicium. Or, le silicium est un élément chimique extrêmement abondant sur Terre et peu cher. Nous avons donc réussi à montrer que l’utilisation de photo-électrodes à base de silicium permettait d’obtenir d’excellents résultats. C’est un élément déterminant pour évaluer le potentiel de notre procédé à être utilisé à grande échelle.
Pour le moment, nous observons des photo-électrodes individuelles : soit des photos-anodes, soit des photo-cathodes. Les performances sont très intéressantes, si on les met en rapport avec le faible coût des matériaux utilisés.
Il nous faut passer désormais au démonstrateur. Nous avons à ce propos été lauréats récemment d’un appel à projet (projet NAUTILUS), lié aux investissements France 2030 sur le volet des Programmes et Équipements Prioritaires de Recherche (PEPR) dédiés à l’hydrogène décarboné. Nous allons donc pouvoir commencer à développer, à partir du mois de janvier 2023, un démonstrateur dans lequel nous allons associer les photos-anodes et les photo-cathodes. Ce démonstrateur sera donc constitué d’une cellule entière, que l’on pourra exposer au soleil et qui produira de l’hydrogène. L’étude du rendement de ce démonstrateur permettra de déterminer si notre approche a le potentiel suffisant pour que le procédé soit industrialisé.
En effet nous sommes très loin d’être les seuls à développer des solutions pour la production d’hydrogène décarboné. Beaucoup d’équipes de recherches travaillent sur tout un tas de solutions et de technologies, et beaucoup d’argent est investi pour créer une filière hydrogène compétitive et décarbonée, en France, en Europe, et même au niveau mondial. Il est très difficile de prévoir aujourd’hui quel procédé sera le plus compétitif sur le moyen terme. Chaque technologie a ses contraintes. Par exemple, nos cellules ont besoin de soleil pour fonctionner, ce qui rend potentiellement leur utilisation contrainte sur le plan géographique. Chaque technologie a ses avantages et ses inconvénients.
Il faut à la fois de la performance, un prix bas, et une durée de vie du produit la plus longue possible. Nos cellules solaires photo-électro-chimiques baignent dans l’eau et cela ajoute des risques, en termes de corrosion par exemple. Ces risques doivent être déterminés et pris en compte, ce que nous faisons dans nos recherches. En ce qui concerne la durée de vie de nos cellules, nous pouvons ajouter une fine couche protectrice pour préserver les cellules de la corrosion. Cela entraîne forcément une baisse de rendement, il faut donc optimiser l’ensemble pour obtenir un matériel performant et résistant dans le temps. C’est ce sur quoi nous travaillons actuellement. Un fois que cela sera fait, le rendement déterminera le prix de revient de l’hydrogène produit, et donc l’intérêt industriel de nos photos-électrodes.
Je travaille actuellement sur un projet (projet ANR PIANIST) destiné à mieux comprendre l’ensemble des propriétés de ces matériaux qui se révèlent assez originales, notamment en ce qui concerne leur manière de conduire le courant ou de récupérer l’énergie solaire. Ces propriétés laissent imaginer que ces matériaux pourraient être performants et permettre le développement de nouvelles cellules photovoltaïques, mais aussi de nouveaux transistors… ces matériaux pourraient même intervenir dans le développement des technologies quantiques.
Propos recueillis par Pierre Thouverez
Dans l’actualité
Dans les ressources documentaires
Facebook
Twitter
Linkedin
Posté le par Pierre Thouverez
Cet article se trouve dans le dossier :
Des matériaux innovants pour la filière hydrogène
Réagissez à cet article
Commentaire sans connexion
Pour déposer un commentaire en mode invité (sans créer de compte ou sans vous connecter), c’est ici.
Votre adresse de messagerie ne sera pas publiée.
Captcha




Vous avez déjà un compte ? Connectez-vous et retrouvez plus tard tous vos commentaires dans votre espace personnel.
Inscrivez-vous !
Vous n’avez pas encore de compte ?
INSCRIVEZ-VOUS
AUX NEWSLETTERS GRATUITES !
Un nouveau matériau pour la production d'hydrogène vert à grande ... - Actualités Techniques de l'Ingénieur
Inscrivez-vous gratuitement aux newsletters du magazine d’actualité et Info mises à jour des ressources documentaires.
Publicité Devenez annonceur
Les plus lus
Les plus commentés
Actualités et veille technologique
L’espace actualité c’est quoi ?
De la découverte en laboratoire à l’innovation industrielle, scrutez les tendances et prenez part aux grands débats scientifiques qui construisent le monde de demain.
CONTACTER LA RÉDACTION
base documentaire associée
Chimie verte
De nouveaux procédés chimiques pour améliorer les rendements tout en respectant l’environnement
livre blanc associé

livre blanc associé

Un nouveau matériau pour la production d'hydrogène vert à grande ... - Actualités Techniques de l'Ingénieur
TECHNIQUES DE L’INGENIEUR
L’EXPERTISE TECHNIQUE ET SCIENTIFIQUE

DE RÉFÉRENCE
ÉDITION – FORMATION – CONSEIL :
Avec Techniques de l’Ingénieur, retrouvez tous les articles scientifiques et techniques : base de données, veille technologique, documentation et expertise technique
TÉLÉCHARGEMENTS GRATUITS
FORMATIONS
SUIVEZ-NOUS
Automatique – Robotique | Biomédical – Pharma | Construction et travaux publics | Électronique – Photonique | Énergies | Environnement – Sécurité | Génie industriel | Ingénierie des transports | Innovation | Matériaux | Mécanique | Mesures – Analyses | Procédés chimie – bio – agro | Sciences fondamentales | Technologies de l’information | Archives |
Aérospatial | Agroalimentaire | Automobile | Éco-industries | Équipements industriels | Plasturgie |
ACCUEIL | A PROPOS | ANNUAIRE AUTEURS | EXPERTS SCIENTIFIQUES | NOUS REJOINDRE | PUBLICITÉ | PLAN DU SITE | MENTIONS LÉGALES | COOKIES | AIDE & FAQ | CONTACT

PAIEMENT
SÉCURISÉ

OUVERTURE RAPIDE
DE VOS DROITS

ASSISTANCE TÉLÉPHONIQUE
+33 (0)1 53 35 20 20

source
https://netsolution.fr/gestion-de-la-production/

A propos de l'auteur

Avatar de Backlink pro
Backlink pro

Ajouter un commentaire

Backlink pro

Avatar de Backlink pro

Prenez contact avec nous

Les backlinks sont des liens d'autres sites web vers votre site web. Ils aident les internautes à trouver votre site et leur permettent de trouver plus facilement les informations qu'ils recherchent. Plus votre site Web possède de liens retour, plus les internautes sont susceptibles de le visiter.

Contact

Map for 12 rue lakanal 75015 PARIS FRANCE